Gauge fields, geometric phases, and quantum adiabatic pumps.
نویسندگان
چکیده
Quantum adiabatic pumping of charge and spin between two reservoirs (leads) has recently been demonstrated in nanoscale electronic devices. Pumping occurs when system parameters are varied in a cyclic manner and sufficiently slowly that the quantum system always remains in its ground state. We show that quantum pumping has a natural geometric representation in terms of gauge fields (both Abelian and non-Abelian) defined on the space of system parameters. Tunneling from a scanning tunneling microscope tip through a magnetic atom could be used to demonstrate the non-Abelian character of the gauge field.
منابع مشابه
Abelian and non-Abelian geometric phases in adiabatic open quantum systems
We introduce a self-consistent framework for the analysis of both Abelian and non-Abelian geometric phases associated with open quantum systems, undergoing cyclic adiabatic evolution. We derive a general expression for geometric phases, based on an adiabatic approximation developed within an inherently open-systems approach. This expression provides a natural generalization of the analogous one...
متن کاملGeometric phases for mixed states and decoherence
The gauge invariance of geometric phases for mixed states is analyzed by using the hidden local gauge symmetry which arises from the arbitrariness of the choice of the basis set defining the coordinates in the functional space. This approach gives a reformulation of the past results of adiabatic, non-adiabatic and mixed state geometric phases. The geometric phases are identified uniquely as the...
متن کاملGeometric phases , gauge symmetries and ray representation
The conventional formulation of the non-adiabatic (Aharonov-Anandan) phase is based on the equivalence class {eiα(t)ψ(t, ~x)} which is not a symmetry of the Schrödinger equation. This equivalence class when understood as defining generalized rays in the Hilbert space is not generally consistent with the superposition principle in interference and polarization phenomena. The hidden local gauge s...
متن کاملua nt - p h / 06 05 08 1 v 1 9 M ay 2 00 6 Geometric phases , gauge symmetries and ray representation
The conventional formulation of the non-adiabatic (Aharonov-Anandan) phase is based on the equivalence class {eα(t)ψ(t, ~x)}. This equivalence class when understood as defining generalized rays in the Hilbert space is not generally consistent with the superposition principle in interference and polarization phenomena. The hidden local gauge symmetry, which arises from the arbitrariness of the c...
متن کاملua nt - p h / 06 05 08 1 v 2 1 6 M ay 2 00 6 Geometric phases , gauge symmetries and ray representation
The conventional formulation of the non-adiabatic (Aharonov-Anandan) phase is based on the equivalence class {eiα(t)ψ(t, ~x)}. This equivalence class when understood as defining generalized rays in the Hilbert space is not generally consistent with the superposition principle in interference and polarization phenomena. The hidden local gauge symmetry, which arises from the arbitrariness of the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 91 18 شماره
صفحات -
تاریخ انتشار 2003